Skip to main content
POST
/
api
/
models
/
embedding
/
train
Python
import os
from woodwide import WoodWide

client = WoodWide(
    api_key=os.environ.get("WOOD_WIDE_AI_API_KEY"),  # This is the default and can be omitted
)
model_public = client.api.models.embedding.train(
    model_name="model_name",
)
print(model_public.id)
{
  "id": "<string>",
  "type": "<string>",
  "training_status": "<string>",
  "name": "<string>",
  "created_at": "2023-11-07T05:31:56Z",
  "updated_at": "2023-11-07T05:31:56Z",
  "input_schema": {
    "columns": [
      {
        "name": "<string>",
        "type": "<string>",
        "values": [
          "<unknown>"
        ]
      }
    ]
  },
  "label_schema": {
    "columns": [
      {
        "name": "<string>",
        "type": "<string>",
        "values": [
          "<unknown>"
        ]
      }
    ]
  }
}

Authorizations

Authorization
string
header
required

Bearer authentication header of the form Bearer <token>, where <token> is your auth token.

Query Parameters

dataset_id
string | null
dataset_name
string | null

Body

application/x-www-form-urlencoded
model_name
string
required
label_column
string | null
input_columns
string[] | null
hyperparameters
string | null
overwrite
boolean
default:false

Response

Successful Response

Public-facing model schema.

Represents the metadata of a machine learning model exposed via the API.

id
string
required
type
string
required
training_status
string
required
name
string
required
created_at
string<date-time>
required
updated_at
string<date-time>
required
input_schema
Schema · object
label_schema
Schema · object